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MXenes1 are two-dimensional (2D) transition metal carbides and/or nitrides that are produced by selective 

etching of the 'A' element (Al, Ga, etc.) from the parent MAX phase(s) or related layered ceramics,2,3 where 'M' 
is an early transition metal and 'X' is either carbon or nitrogen. MXenes have recently gained interest for 

applications that are geared towards electromagnetic interference shielding,4 energy storage applications,3,5,6 
catalysis,7 optoelectronics,8 sensors,9 and medicine.10 Although bottom-up synthesis methods for 2D materials 

such as graphene and transition metal dichalcogenides (TMD) are well developed, until now, bottom-up 
synthesis of MXenes has not been reported. Understanding the bottom-up growth mechanism for MXenes will 

enable growth of large-scale, high-quality MXenes, while also providing increased opportunities to tailor 

properties for electronic and optoelectronic applications. 

  

In this work, in situ aberration-corrected scanning transmission electron microscopy (STEM) was used to directly 

determine that the Frank van der Merwe growth mode is operative, as a hexagonal TiC (h-TiC) single adlayer 
forms on both surfaces of free-standing 2D MXene (Ti3C2) monolayer flakes, thereby forming new 2D MXenes, 

Ti4C3 and Ti5C4, at temperatures above 500 °C (Figure 1). After the functional groups are removed, the Ti and C 
atoms in Ti3C2 monolayer flakes migrate to the two surfaces then diffuse to form triangular islands of a single h-
TiC adlayer (Figure 1a). Local Ti4C3 and Ti5C4 structures are confirmed by excellent agreement between 

experimental and simulated STEM images (Figure 1b). The growth of single-layer h-TiC is controlled by a small 
diffusion barrier and a large step-edge barrier, as confirmed by density functional theory (DFT) and ReaxFF 

molecular dynamics simulations. The in situ heating experiments also reveal how the edge structure of the 
MXene and the h-TiC adlayer evolve during transformation. The findings presented here provide insights into 

new, controlled growth methods to fabricate MXenes with controlled morphologies for tailored functionality. 
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Figure 1. (a) Schematic of the homoepitaxial growth process to form new MXene phases (Ti4C3 and Ti5C4) from a 
monolayer Ti3C2Tx substrate through electron beam irradiation and heating. Ti atoms from different layers are 
plotted using different shades of blue. (b) Typical STEM image acquired after heating the MXene flakes inside 

the microscope at 500 °C. The black areas are holes while areas framed by green, blue, and black dashed lines 

are new MXene layers of Ti3C2, Ti4C3, and Ti5C4, respectively. The comparison between experimental STEM 
image, simulated STEM image, and crystal structure models are shown on the left. 


